Lesson 11. Formulating Dynamic Programming Recursions

1 Formulating DP recursions

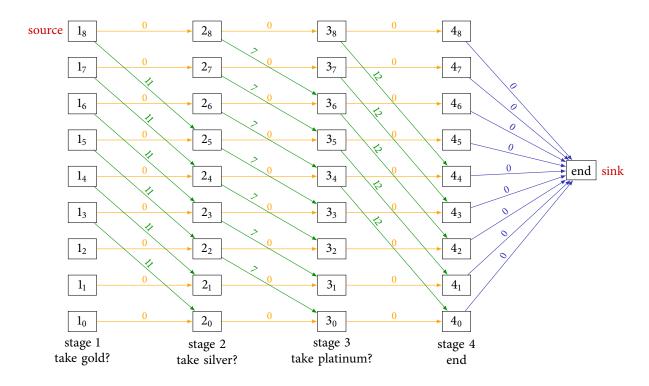
- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
 - o However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion
- Let's revisit the knapsack problem that we studied back in Lesson 5 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

 We formulated the following dynamic program for this problem by giving the following longest path representation:



• Let's formulate this as a dynamic program, but now by giving its recursion representation

• Let	w_t = weight of metal t	v_t = value of metal t	for $t = 1, 2, 3$	
Stages:				
States:				
• Allowable d	lecisions x_t at stage t and state n :			
D 1 6 1				
Reward of d	lecision x_t at stage t and state n :			
Reward-to g	go function $f_t(n)$ at stage t and st	tate n:		
• Boundary co	onditions:			
Recursion:				

• Desired reward-to-go function value:

• In general, to formulate a DP with its recursive representation:

Dynamic program - recursive representation

- **Stages** t = 1, 2, ..., T and **states** n = 0, 1, 2, ..., N
- Allowable **decisions** x_t at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)
- **Cost/reward** of decision x_t at stage t and state n (t = 1, ..., T; n = 0, 1, ..., N)
- **Cost/reward-to-go** function $f_t(n)$ at stage t and state n (t = 1, ..., T; n = 0, 1, ..., N)
- **Boundary conditions** on $f_T(n)$ at state n (n = 0, 1, ..., N)
- **Recursion** on $f_t(n)$ at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)

$$f_t(n) = \min_{x_t \text{ allowable}} \text{or max} \left\{ \begin{pmatrix} \text{cost/reward of} \\ \text{decision } x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \text{new state} \\ \text{resulting} \\ \text{from } x_t \end{pmatrix} \right\}$$

- Desired cost-to-go function value
- How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path		Recursive
node t_n	\leftrightarrow	state n at stage t
$\operatorname{edge}\left(t_{n},\left(t+1\right)_{m}\right)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of edge $(t_n, (t+1)_m)$	\leftrightarrow	cost/reward of decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of shortest/longest path from node t_n to end node	\leftrightarrow	$\cos t/\operatorname{reward-to-go}$ function $f_t(n)$
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$
shortest or longest path	\leftrightarrow	recursion is min or max:
		$f_t(n) = \min_{x_t \text{ allowable}} \text{or max} \left\{ \begin{pmatrix} \text{cost/reward of} \\ \text{decision } x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \text{new state} \\ \text{resulting} \\ \text{from } x_t \end{pmatrix} \right\}$
source node 1_n	\leftrightarrow	desired cost-to-go function value $f_1(n)$

2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
 - \circ start with the boundary conditions in stage T
 - compute values of the cost-to-go function $f_t(n)$ in stages $T-1, T-2, \ldots, 3, 2$
 - ... until we reach the desired cost-to-go function value
- Stage 4 computations boundary conditions:

• Stage 3 computations:

$$f_3(8) =$$
 $f_3(7) =$
 $f_3(6) =$
 $f_3(5) =$
 $f_3(4) =$
 $f_3(3) =$
 $f_3(2) =$
 $f_3(1) =$
 $f_3(0) =$

• Stage 2 computations:

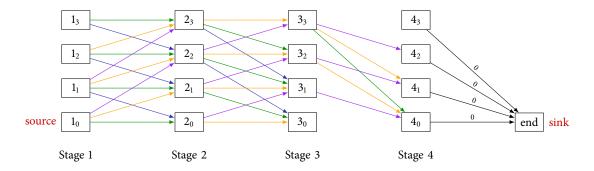
$f_2(8) =$	
$f_2(7) =$	
$f_2(6) =$	
$f_2(5) =$	
$f_2(4) =$	
$f_2(3) =$	
$f_2(2) =$	
$f_2(1) =$	
$f_2(0) =$	
Stage 1 co	omputations – desired cost-to-go function:
Maximur	m value of theft:
Metals to	take to achieve this maximum value:

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of \$5,000. Each batch of beer costs \$2,000 to produce. Batches can be held in inventory at a cost of \$1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Formulating the DP

- Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path representation:
 - Stage t represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
 - Node t_n represents having n batches in inventory at stage t (n = 0, 1, 2, 3).



Month	Production amount	Edge		Edge length
1	0	$(1_n, 2_{n-1})$	for $n = 1, 2, 3$	1(n-1)
1	1	$(1_n, 2_n)$	for $n = 0, 1, 2, 3, 4$	5 + 2(1) + 1(n)
1	2	$(1_n, 2_{n+1})$	for $n = 0, 1, 2$	5 + 2(2) + 1(n+1)
1	3	$\left(1_{n},2_{n+2}\right)$	for $n = 0, 1$	5+2(3)+1(n+2)
2	0	$(2_n, 3_{n-2})$	for $n = 2, 3$	1(n-2)
2	1	$(2_n, 3_{n-1})$	for $n = 1, 2, 3$	5+2(1)+1(n-1)
2	2	$(2_n, 3_n)$	for $n = 0, 1, 2, 3$	5 + 2(2) + 1(n)
2	3	$\left(2_{n},3_{n+1}\right)$	for $n = 0, 1, 2$	5+2(3)+1(n+1)
3	0	not possible		
3	1	$(3_n, 4_{n-3})$	for $n = 3$	5+2(1)+1(n-3)
3	2	$(3_n, 4_{n-2})$	for $n = 2, 3$	5+2(2)+1(n-2)
3	3	$(3_n,4_{n-1})$	for $n = 1, 2, 3$	5+2(3)+1(n-1)

Stages:				
States:				
Allowable decisions x_i	t at stage t and state	e n:		
Reward of decision x_t	at stage <i>t</i> and state	n:		
Daward to as function	$f_t(n)$ at stage t and	d state <i>n</i> :		
icwaru-io go fulicilol				
Kewaru-to go runction				
reward-to go function				
newaru-to go function				
newaru-to go function				
Boundary conditions:				
Boundary conditions:				
Boundary conditions:				
Boundary conditions:				
Boundary conditions:				

Solving the DP

Stage 4 comp	ntations – boundary conditions:		
Stage 3 comp	atations:		
$f_3(3) =$			
$f_3(2) =$			
$f_3(1) =$			
$f_3(0) =$			
Stage 2 comp	itations:		
$f_2(3) =$			
$f_2(2) =$			
$f_2(1) =$			
$f_2(0) =$			
Stage 1 compu	tations – desired cost-to-go func	tion:	
Minimum tot	al production and holding cost:		
	nounts that achieve this minimur		